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1 Objectives

The objective of this effort was to develop a methodology which would allow enhanced
signal transmission, high resolution range imaging and/or target detection through
optically obscuring, discrete-scatterer media such as atmospheric clouds, fog, dust and
other aerosols is of significant interest in defense as well as commercial applications.

2 Summary of the results

We briefly summarize here the areas of our work and the main results.

2.1 Imaging with multiple frequency bands using chirped
train signals for the purpose of extracting information
on frequency dependence of the scattering process

This development is based on a further exploration of the properties of chirped trains
of wide-band pulses, described in Refs. [1, 2] Such signals possess a rich spectrum
consisting of a sequence of frequency bands centered at multiples of the “funda-
mental frequency” defined by the average pulse-pulse time spacing. While we have
previously considered only the lowest frequency band (the “first harmonic”) of the
signal spectrum, the present work exploits also higher harmonics. Our theoretical
and numerical analysis shows that, with the appropriate choice of the parameters of
the pulses and the train, it is possible to form signals characterized by a number of
separate frequency bands separated by gaps whose widths can be controlled by the
parameters. We analyze properties of the point-spread functions resulting from ap-
plication of such signals to imaging. The proposed approach allows forming multiple
images based on frequency sub-bands, for the purpose of extracting information on
the frequency dependence of the scattering processes.

The approach is described in detail in the paper entitled ”Imaging with multiple fre-
quency bands using chirped train signals“. The paper was submitted for publication
to IEEE Transactions on Geoscience and Remote Sensing, and is attached to this
report as Appendix A.

2.2 Imaging and communication with optical or infrared pulsed
signals through obscuring random media

Imaging and communication with optical or infrared pulsed signals through obscuring
random media (e.g., atmospheric clouds, fog, dust, or aerosols) is a long-standing and
challenging problem, both experimentally and theoretically. From the experimental
and applications perspective, a coherently detected pulse field preserves its time pro-
file, but is strongly attenuated, at the rate proportional to the total cross-section of

2
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the wave on an individual medium scatterer. The incoherently detected field intensity
(or, more generally, the mutual coherence function (MCF)), although attenuated at
a lower rate (proportional to the absorption cross-section) than the coherent field,
develops a long diffusive tail which causes loss of resolution in imaging and loss of
bandwidth in communication.

The principal goal of our project was to develop formulation for pulse forming, de-
tection, and processing methods which would enhance the signal penetration through
obscuring media, without compromising the range resolution in imaging or the bit
rate in communication. The main idea was to utilize incoherently detected pulses
(through measurements of their intensity), hence to take advantage of their reduced
attenuation and, at the same time, to reduce the detrimental effects of diffusion by
means of processing of the received signal.

We developed rigorous approach based on analytic complex-contour integration of
numerically determined cut and pole singularities of the radiative transport equation
solution in the Fourier space. In the context of simulations based on the developed
algorithm, we found that the intensity of an optical pulse, propagating in a dilute ran-
dom medium composed of scatterers large compared to the pulse carrier wavelength
(a condition well-met in the atmospheric cloud propagation scenario), in addition to
the coherent (“ballistic”) contribution and a long late-time diffusive tail, also exhibits
a narrow, sharply rising early-time diffusive component which

- can be attributed to the small-angle diffractive part of the scattering cross-
section on individual medium particles,

- is attenuated proportionally to the non-diffractive rather than total cross-section,

- can be extracted (due to its sharp rise and therefore rich high frequency con-
tent) by high-pass filtering of the received pulse , i.e., without the necessity of
performing any of the time-gating procedures,

- is practically insensitive to the motion of medium constituents.

In Fig. 1 we show the time-resolved intensity distribution for two propagation dis-
tances R1 = 12 `t and R2 = 16 `t in the atmospheric cloud medium. The medium
is characterized by the average water droplet size of a = 5µm and the scatterer
number density of n0 = 109 m−3, resulting in the coherent attenuation length of `t =
1/(n0 σt) ≈ 6 m. A coherent source emitting a Gaussian-modulated field of carrier fre-
quency c/λ0, with λ0 = 0.633µm, resulting in intensity S(t) = exp(−t2/2T 2

p )/(
√

2π T p),
with T p = 60 ps was assumed. The time-dependent intensity clearly exhibits a dis-
tinctive early-time diffusion behavior, characterized by a narrow spike followed by a
much broader late-diffusion maximum and a long diffusive tail. As the propagation
distance increases, the broad diffusion shoulder starts overlapping the trailing edge
of the early-time diffusion peak, but its sharply rising leading edge remains.

3
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Figure 1: Intensity distributions showing early- and late-time diffusion behavior, for
propagation distances R1 = 12 `t and R2 = 16 `t, with the time scale indicated on top.
The curves are visually indistinguishable from the Monte Carlo simulation results.

Figure 2: Filtered intensities for R1 = 12 `t (top) and R2 = 16 `t (bottom). Coherent
contributions, multiplied by factors 102 and 5× 102, are shown for reference.

4
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Because of its sharp rise and therefore rich high-frequency content, the early-time
diffusion can be extracted by a frequency gating procedure (i.e., without the neces-
sity of applying any time gating). The filtered pulses are plotted in Fig. 2, for the
same propagation distances, R1 = 12 `t and R2 = 16 `t, as in Fig. 1. The coher-
ent(”ballistic”) signal intensities corresponding to the same propagation distances
are also included. (Please note the different scaling factors.) The plots show that
the filtered early diffusive signals exceed those of the coherent intensity by the factor
∼ 100 − 500.

To summarize, the developed approach allows to access part of the energy residing
in the diffusive component of the intensity without compromising the resolution. This
result may have important implications in high-resolution range imaging as well as
communication through obscuring (atmospheric clouds, fog, dust, or aerosols) media.

The detailed description of the approach as well as some representative numerical
results are presented in [3] and [4].

2.3 Doppler effects in time-resolved intensity of optical pulses
propagating through moving particulate atmospheric me-
dia

We initiated the analysis of propagation of optical and infrared pulses through moving
atmospheric particulate media. We generalized the radiative transfer equation to
describe effects of the Doppler frequency shift on the time-resolved specific intensity
of pulses. The overall effect of the frequency shift was estimated and found to be
small, as a result of cancellation of phase variations in the the pulse intensity. In
particular, that cancellation is nearly perfect in the pulse component associated with
“early-time diffusion”, i.e., in the early-time steeply rising structure due to small-angle
diffractive scattering on medium constituents.

The description of the approach and the preliminary results are presented in Ap-
pendix B. The paper is in preparation.

5
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Appendix A
Imaging with multiple frequency bands using

chirped train signals
Elizabeth H. Bleszynski, Marek Ch. Bleszynski, Thomas Jaroszewicz, and Richard Albanese

Abstract—Properties of chirped-train waveforms such as their
multi-band power spectra and the resulting point spread and
ambiguity functions are described. Possible advantages in the
utilization of chirped trains in “multi-spectral” imaging (i.e.,
imaging based on frequency sub-bands of the chirped train
signal) allowing extraction of frequency dependent information
with improved signal-to-noise ratio are presented.

Index Terms—chirped train signal, point spread function,
ambiguity function, multi-spectral imaging

I. INTRODUCTION

In our previous work [1], [2] we presented an approach to
imaging through obscuring media based on a particular form a
transmitted waveform – a chirped train signal – i.e., a sequence
of identical pulses emitted at linearly varying (chirped) time
intervals. The wide-band nature of the pulses was facilitating
their penetration through the medium (by means of precursor-
type phenomena), while the chirp of the train was providing
the frequency bandwidth necessary for achieving the desired
range resolution in the image. The latter property of the
chirped train was due to its power spectral density containing
a structure similar to that of a conventional, continuous, linear-
frequency-modulated chirped signal [3].

Chirped train signals are a particular realization of a class
of nonuniform pulse trains and have beed studied mostly in
the context of their range and Doppler (velocity) resolution
potential [4], [5], [6], [7].

Here, we concentrate on another feature specific to chirped
trains – the existence of “higher harmonics” in the signal
power spectrum, i.e., the isolated frequency sub-bands cen-
tered approximately at multiples of the chirp fundamental
frequency. This property was not relevant in applications we
previously considered [2] because of the dominance (due to
attenuation in the medium) of the lowest frequency band
corresponding to the chirp fundamental frequency.

In this paper we reexamine the problem of the design of
chirped-train waveforms in situations where the higher har-
monics of the power density spectrum are relevant. We show
that under such circumstances it is possible to redistribute
energy of the signal into several narrow frequency sub-bands,

E. H. Bleszynski, M. Ch. Bleszynski, and T. Jaroszewicz are with
Monopole Research, Thousand Oaks, CA 91360, U.S. e-mail: eliza-
beth@monopoleresearch.com.

R. Albanese is with ADED Co, San Antonio, TX 78217, U.S. e-mail:
richard.albanese2@gmail.com.

Manuscript received xxx xx, 20xx; revised xxx xx, 20xx.

which can be then used to form “spectral images” of lower res-
olution than those obtained with the full signal bandwidth, but
allowing more efficient extraction of frequency-dependent
information on the material content of the scatterers present
on the scene.

It has been shown previously [8] that such images can be
obtained by partitioning (in the data processing stage) a wide
frequency band of the conventional continuous radar chirp into
the desired sub-bands. The chirped train approach proposed
here has the potential of enhancing those opportunities: by
splitting the signal spectrum into sub-bands separated by
gaps, one can consolidate, with the same total signal energy,
more energy in the selected sub-bands, and hence achieve
better signal-to-noise ratios.

Moreover, since the energy redistribution is controlled by
a single parameter of the transmitted waveform – the chirped
train bandwidth – one can envisage a data collection scheme
alternating between two modes: (i) the high-resolution imag-
ing mode utilizing the entire pulse bandwidth, and (ii) the
“spectroscopic” multi-band mode in which the energy is
repartitioned into several separate sub-bands. The mode (i)
would provide data for analyzing the scene and identifying
spatial areas and objects of interest. Then, the data obtained
in mode (ii) could be used to extract further properties of
already localized objects.

The analysis of the ambiguity function (AF) of chirped
train signals further reveals that while the AF arising in the
spectroscopic mode closely resembles the ridge-type structure
of the AF of a conventional chirp signal, the AF corresponding
to the full-band high-resolution imaging mode exhibits a
sheared multi-peak structure which may be of potential interest
in Doppler-based target indication.

The paper organized as follows: In Section II we briefly
describe a general chirped train signal as a convolution of
a function representing a single pulse and another function
controlling the distribution of pulses in time. We also discuss
the signal main characteristics: in particular its multi-band
power density spectrum, the PSF and the AF. Section III
concentrates on the selection of parameters of the chirped train
waveform of interest in “high-resolution” and “multispectral”
imaging modes. An example involving a chirped train signal
with rectangularly modulated sinusoidal pulses is presented in
Section IV. In Section V possible application of chirped train
signals in spotlight synthetic-aperture radar (SAR) imaging
with multiple frequency bands is discussed and illustrated by
an example. Section VI briefly addresses the experimental
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possibility of forming the desired waveforms. Section VII,
Summary, completes the paper.

II. DEFINITION AND PROPERTIES OF A CHIRPED TRAIN
SIGNAL

We start with the discussion of the properties of a signal
formed by a chirped train of pulses. As we will see, the chirped
sequence of pulses can be considered a “discrete analogue”
of a conventional continuous chirp pulse, but with a more
complex and potentially more useful power density, PSF, and
AF structure.

A. Definition of a chirped train of pulses

We consider a signal F (t) composed of a sequence of
identical pulses f(t), each of duration T f , emitted with mono-
tonically decreasing time intervals,

F (t) =

Ng/2∑
n=−Ng/2

f(t− tn) . (1)

In analogy to the most common continuous chirp signals,
characterized by linear frequency modulation [3], we assume
the time instances tn to be given by1

tn = τg

(
1− βg

n

2Ng

)
n , (2)

or, in other words, the differences between the consecutive
intervals to remain constant,

(tn+1 − tn)− (tn − tn−1) = −
τg βg

Ng

. (3)

We call such a signal (1) a chirped train waveform. Without
losing generality, but for a greater clarity of expressions, the
number of pulses in the train, Ng + 1 will be assumed odd
(i.e, Ng will be assumed even).

The quantity τg in Eqs. (2) and (3) is the average pulse
repetition interval. The average pulse repetition frequency (or
the train center frequency) is defined as

νg :=
1

τg

, (4)

where βg is the frequency modulation parameter. We will
denote by T g the duration of the entire chirped train signal,

T g := Ng τg . (5)

An example of the chirped train signal is shown in Fig. 1.
To attach a more physical meaning to the notion of the “train

chirping”, we consider a situation when the number of pulses
in the train is large, Ng � 1, and the frequency modulation
parameter is small, βg � 1. Then the time increments between
pulses can be expressed as the “derivative” of tn with respect
to n,

t′n :=
dtn
dn

= τg

(
1− βg

n

Ng

)
, (6)

1 We note that although the formulas (2) and (3), with βg > 0, describe
an “up-chirp” train, the results of the paper apply equally to both down- and
up-chirps.

(a)

(b)

Fig. 1: The first (a) and last (b) few pulses in the chirped train
for the problem (b) in Table I.

the instantaneous frequency of the train of pulses can be
defined as

νn :=
1

t′n
=

νg

1− βg n/Ng

≈ νg

(
1 + βg

n

Ng

)
, (7)

and the chirped train frequency span becomes

νNg/2
− ν−Ng/2

=
βg νg

1− β2
g/4
≈ βg νg =: Bg , (8)

where the approximate equality in the last two formulas are
valid for βg � 1. In analogy to the continuous chirp signal, we
refer to the quantity Bg as the bandwidth of the chirped train
and, as indicated by the approximate equality in Eq. (8), the
modulation parameter βg acquires the meaning of a relative
train bandwidth, βg = Bg/νg, i.e., the train bandwidth in the
units of the train center frequency.

In our subsequent considerations, we will assume that the
pulses in the train do not overlap, i.e., the pulse duration T f

is shorter than the minimum pulse-pulse interval. It follows
from (2) that the condition for the pulses not to overlap takes
the form:2

T f < tNg/2
− tNg/2−1 =

1

νg

(
1− βg

Ng − 1

2Ng

)
, (9)

which fort small bandwidth βg � 1 simply becomes

T f <
1

νg

. (10)

2 The assumption of non-overlapping pulses can be rigorously stated only
if the pulses f(t) vanish exactly outside their duration intervals. In many
practical problems this condition holds only approximately, and the above
assumptions have to be relaxed.
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In the following, in continuation of the notation of this
Section, we will denote quantities associated with individual
pulses f(t) in the train with the subscript f and those char-
acterizing properties of the train sequence with the subscript
g.

B. Power density of a chirped train signal

It is instructive to represent the chirped train F (t) of Eq. (1)
as the convolution

F (t) = (g ◦ f)(t) , (11)

where g(t) is a sequence of delta-functions

g(t) =

Ng/2∑
n=−Ng/2

δ(t− tn) . (12)

This notation emphasizes the fact that the signal F (t) involves
the time profile f of the single pulse, as well as the function
g which describes location of pulses in time.

The convolution form (11) of the train implies immediately
that its Fourier transform is a product

F̃ (ν) = g̃(ν) f̃(ν) , (13)

with

g̃(ν) =

Ng/2∑
n=−Ng/2

e 2πi νtn (14)

and
f̃(ν) :=

∫ ∞
−∞

dt e 2πi νt f(t) . (15)

In the following we will always assume that the direct current
(DC) component of the pulse vanishes, hence

f̃(0) =

∫ ∞
−∞

dt f(t) = 0 . (16)

The quantity directly related to sensing and imaging appli-
cations is the power density,

W (ν) := |F̃ (ν)|2 = wg(ν)wf (ν) (17)

which, in the case of the chirped train is the product of the
power densities of the train sequence

wg(ν) = |g̃(ν)|2 (18)

and a single pulse

wf (ν) = |f̃(ν)|2 . (19)

We will focus our attention now on the power density wg(ν)
of the chirped train sequence. We will show that, under some
circumstances, the power density spectrum of the chirped train
sequence acquires the form of separate sub-bands centered
approximately at multiples of the chirp train center frequency.3

Further, we will argue how the presence of isolated sub-bands
can prove advantageous in a “multispectral” imaging scenario.

3The chirped train power density multi-band structure is due to the discrete
nature of the signal.

The power density (18) can be represented as a double sum
of the form

wg(ν) :=
∣∣g̃(ν)

∣∣2 =

Ng/2∑
m,n=−Ng/2

e 2πi ν (tm−tn)

=

Ng/2∑
m=−Ng/2

Ng/2∑
n=−Ng/2

e 2πi ν τg (m−n)
[
1− 1

2 βg (m+n)/Ng

]

=

Ng∑
p=−Ng

Ng−|p|∑
q=−(Ng−|p|)

∆q=2

e 2πi ν τg p (1− 1
2βg q/Ng)

≡
Ng∑

q=−Ng

Ng−|q|∑
p=−(Ng−|q|)

∆p=2

e 2πi ν τg p (1− 1
2βg q/Ng) ,

(20)

where in the last expressions we indicated that the sums run
over p ≡ m − n or q ≡ m + n with the increments ∆p = 2
or ∆q = 2. The p sum in the last expression of Eq. (20)
can be conveniently expressed in terms of the “periodic sinc
function”4 defined by

sincN (z) :=
1

N + 1

N/2∑
n=−N/2

e 2πi z n/N =
sin
(
π N+1

N z
)

(N + 1) sin
(
π z
N

) ;

(21)
if N is odd, the sum here runs over odd-half-integer indices
n. An important property of the function sincN (z) is its
(anti-)periodicity in z: the relation

sincN (z +N) = (−1)N sincN (z) (22)

means that sincN (z) is periodic (for N even) or anti-periodic
(for N odd) with the period N .

With the definition (21), Eq. (20) takes the form

wg(ν) =

Ng∑
q=−Ng

(Ng − |q|+ 1)

sincNg−|q|

(
2 (Ng − |q|)

(
1−

βg q

2Ng

)
ν

νg

)

=

Ng∑
j=0

(j + 1) sincj

(
2 j

(
1± βg

Ng − j
2Ng

)
ν

νg

)
.

(23)

In the last expression the “±” symbol indicates that one has
to perform the summation twice, with the “+” and “−” signs;
that applies to all terms in the j sum except j = Ng, for which
the coefficient of βg vanishes and which enters the sum only
once.

We will now use the expression (23) to analyze some of
the properties of the power spectrum wg(ν), in particular its
approximate periodicity in frequency with the period νg.

4 This function is related to the Dirichlet kernel Dn(z) [9] by sincN (z) =
(N + 1)−1DN/2(2πz/N).
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We use the elementary identity5

π

sin(πz)
=

∞∑
l=−∞

(−1)l

z − l
(24)

to represent the periodic sinc function (21) as

sincN (z) =
∞∑

l=−∞

(−1)lN sinc

(
N + 1

N
(z − lN)

)
, (25)

i.e., as an infinite sum of ordinary sinc functions, sinc(x) :=
sin(πx)/(πx), centered at the multiples of the period N of
sincN (z). By substituting (25) in Eq. (23) we find then

wg(ν) =
∞∑

l=−∞

wl(ν)

=
∞∑

l=−∞

Ng∑
j=0

(−1)lj(j + 1) sinc

(
2 (j + 1)

(
γ±j

ν

νg

− l

2

))
(26)

with

γ±j := 1± βg

Ng − j
2Ng

. (27)

When inspecting the expression (26) we observe that each wl
is a sum of Ng + 1 terms, each term peaked at

ν =
νg

2 γ±j
l for j = 0, . . . , Ng . (28)

For a small relative bandwidth βg, the quantities γ±j become
close to unity, and all terms in a given wl are peaked near
the same value (νg l/2). Further, for the odd values of l, we
expect the terms wl to be small as the consecutive terms in the
j sum change sign and tend to cancel each other. As a result,
the power density wg(ν) is dominated by terms of even l, i.e.,
by integer multiples of the “fundamental” chirp frequency νg.
Fig. 3, as discussed in more detail in Section III, confirms our
predictions.

It can be shown, although we do not present the derivation
here, that under the assumptions of a large number of pulses
in the train,

Ng � 1 , (29)

a small relative bandwidth,

βg = Bg/νg � 1 , (30)

and a large time-bandwidth product,

b = Bg Tg (31)

(where, again, T g := Ngτg is the signal duration), the exact
expression (26) can be well approximated, for ν ≥ 0, by

wg(ν) ≈ N2
g sinc2

(
Ng

ν

νg

)
+
νg Ng

Bg

∞∑
k=1

1

k
rect

(
ν − k νg

k Bg

)
.

(32)

5 The series here is not absolutely convergent, but can be made so by
taking a symmetric limit of a finite sum or by grouping terms, as in [10],
Eq. (4.3.93).

Here rect(x) = 1 for |x| ≤ 1
2 and 0 otherwise, and the first

term, peaked at ν = 0, is an approximation to the l = 0 term
in Eq. (26).

The approximate expression (32) has a simple physical
interpretation. It represents the spectrum wg(ν) as a su-
perposition of the “fundamental harmonic” (k = 1) sub-
band precisely corresponding to the “Fresnel spectrum” of a
conventional chirp signal (centered at νg and of bandwidth
Bg) and higher-order (k = 2, 3, . . . ) “harmonics”, each of
them approximately rectangular, of width proportional to k,
magnitude inversely proportional to k, and centered at

νk = k νg . (33)

It also follows from the approximate formula (32) that the
consecutive harmonics are well separated for harmonic orders

k < kmax =
νmax

νg

=
νg

Bg

=
1

βg

, (34)

and, that at higher frequencies, the harmonics start to overlap.
Or, alternatively, the part of the frequency spectrum corre-
sponding to the region of non-overlapping harmonics is

0 < ν < ν max =
ν2

g

Bg

. (35)

As an example, in Fig. 2 we display power spectral densities
of the train sequence (wg(ν)), the pulse (wf (ν)), and the full
chirped train signal (W (ν)) for parameters listed in Table I.
The pulse is assumed to be a rectangularly modulated sinusoid
of Eq. (65) (Appendix A), characterized by a frequency νf and
a duration T f .

The parameters in this example are chosen in such a way
that the first nine harmonics of the train spectrum form isolated
sub-bands and the higher harmonics start to overlap. We
observe that the rigorously computed power density of the train
sequence wg(ν), Eq. (26), resembles the pattern predicted by
the “rectangular approximation” of Eq. (32). We also observe
that the separation of lower harmonics and overlapping of
higher harmonics for the rigorously computed power densities
follow the predictions of the approximate relation (34).

In example (a) of Fig. 2 the pulse center frequency was
chosen in such a way that the pulse power spectrum wf (ν)
overlaps three isolated harmonics, k = 4, 5, 6 of the train
spectrum wg(ν). As a consequence, the power spectrum W (ν)
of the entire signal, being the product of the two (Eq. (17)),
also displays the three distinguishable sub-bands.

The presence of isolated sub-band structures can be of
particular interest in multispectral imaging:

- it redistributes energy of the signal in several narrow
frequency sub-bands which can be then used in forming
“spectral images” providing valuable frequency depen-
dent information on the material content of the scatterers,

- it allows to consolidate, with the same total signal energy,
more energy in the selected sub-bands, and hence to
achieve a better signal-to-noise ratio.

In Fig. 2(b) we present an example characterized by a
similar as before pulse duration T f , but a higher pulse center
frequency νf . Now the pulse power spectrum covers the region
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TABLE I: Pulse and train parameters used in Fig. 2

example νf (GHz) T f (ns) νg (GHz) Bg (GHz) Ng

(a) 2.200 0.91 0.420 0.040 500

(b) 5.000 1.20 0.420 0.040 500

(a)

(b)

Fig. 2: Power densities of the train sequence (wg(ν)), the pulse
(wf (ν)), and the full signal (W (ν)), for examples (a) and (b)
of Table I. Normalization of the power spectra is arbitrary to
facilitate comparison of their shapes.

where the train harmonics start to overlap. In this situation,
there are no isolated sub-bands in the power spectrum of
the chirped train signal and, as we discuss in more detail in
Section IV, the signal acquires properties similar to those of
a classical chirp.

The two-mode data collection scheme proposed later in this
paper comprises scenarios with both non-overlapping as well
as overlapping frequency sub-bands.

C. Point-spread and ambiguity functions of a chirped train
signal

In range-based coherent imaging or remote sensing appli-
cations based on heterodyne detection the received real signal
is converted into in-phase (“I”) and quadrature-phase (“Q”)
channels. This operation amounts to forming the analytic
representation FA(t) of a real signal F (t), defined as

FA(t) ≡ (AF )(t) :=

∫ ∞
0

dν e−2πi νt F̃ (ν) , (36)

i.e., the part of the signal consisting of only positive-frequency
Fourier components. Hence, the Fourier transform of the
analytic representation FA(t) is simply

F̃A(ν) = H(ν) F̃ (ν) , (37)

where H is the Heaviside step function.6

Under the assumption that scattering takes place on a local-
ized point-like target, the received signal F ′(t) is proportional
to the transmitted signal F (t) delayed by the round-trip time
between the transmitter/receiver and the target located at the
distance r0,

F ′(t) = F (t− 2 r0/c) . (38)

It is well known that in this case the optimal range resolution
can be achieved through compression of the received signal by
means of the conventional matched-filtering.7 This procedure
amounts to convolving the analytic representation of the re-
ceived signal with the time-reversed and translated transmitted
signal, and forming the positive-frequency autocorrelation
function also known as the point-spread function (PSF):

χF (t− 2 r0/c) =

∫ ∞
−∞

ds F ′A(s)F ∗(s− t)

=

∫ ∞
−∞

ds FA(s− 2r0/c)F
∗(s− t)

=

∫ ∞
−∞

ds FA(s− 2r0/c)F
∗
A(s− t) .

(39)

We note that, since A is a projection operator, either one
or both factors in the above integrands can be the analytic
representations of F .

Equivalent and useful expressions for the PSF of the signal
F (t) are:

χF (t) :=

∫ ∞
−∞

ds FA

(
s+ 1

2 t
)
F ∗A
(
s− 1

2 t
)

=

∫ ∞
0

dν e−2πi νt |F̃ (ν)|2

=

∫ ∞
0

dν e−2πi νt |g̃(ν)|2 |f̃(ν)|2 ,

(40)

The last equality follows from the fact that the power spectral
density of the chirped train signal is the product of the power
densities of the train sequence and a single pulse, (17) – (19).

Another important tool in characterizing waveforms is the
time-frequency autocorrelation function or the ambiguity
function (AF) [12], [13], [7]. Following the convention of
Ref. [13] we define this quantity as

χF (t, ν) :=

∫ ∞
−∞

ds e 2πi νs FA

(
s+ 1

2 t
)
F ∗A
(
s− 1

2 t
)

=

∫ ∞
|ν|/2

du e−2πiut F̃
(
u+ 1

2 ν
)
F̃ ∗
(
u− 1

2 ν
)
.

(41)

6 Equivalently, the operator A can be expressed in terms of the Hilbert
transform H ([11], Ch. 13). We differ from the last reference in defining A
as 1

2
(I − iH), rather than as I − iH; therefore, with our definition, A is a

projection operator.
7 If the signal propagates through a strongly dispersive medium, the

appropriate filter may be different than the matched one [2]; here we do
not consider medium effects.
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The lower limit in the u integral is due to the definition (37)
of the analytic representation of F̃ .

The AF is a generalization of the PSF to the case where,
as a result of target motion, the received signals are shifted
in frequency relative to the transmitted ones. The frequency
variable ν represents thus a Doppler shift, and the width of the
AF in that variable defines the Doppler resolution of the signal,
i.e., its ability of differentiating between objects moving with
different (radial) velocities.

Since the pulses in the train are assumed identical, the PSF
and the AF of the entire signal F (t) can be expressed in terms
of the the corresponding functions of the individual pulses f(t)
in the train sequence. It follows from Eqs. (40), (41), and (1)
that

χF (t) =

Ng/2∑
m,n=−Ng/2

χf
(
t− (tm − tn)

)
, (42)

χF (t, ν) =

Ng/2∑
m,n=−Ng/2

eπi ν (tm+tn) χf
(
t− (tm − tn), ν

)
, (43)

where

χf (t) :=

∫ ∞
−∞

ds fA
(
s+ 1

2 t
)
f∗A
(
s− 1

2 t
)

=

∫ ∞
0

dν e−2πi νt |f̃(ν)|2
(44)

and

χf (t, ν) :=

∫ ∞
−∞

ds e 2πi νs fA
(
s+ 1

2 t
)
f∗A
(
s− 1

2 t
)

=

∫ ∞
|ν|/2

du e−2πiut f̃(u+ 1
2 ν) f̃∗(u− 1

2 ν)

(45)

are the PSF an AF of the individual pulse f(t).
Closed-form expressions for the PSF and AF of an indi-

vidual, rectangularly modulated oscillatory pulse, valid for an
arbitrary (in particular small) number of oscillations and, in the
case of AF, modified by the addition of frequency windowing,
are presented in Appendix A. Eqs. 42 and 43 are subsequently
used to numerically evaluate PSF and AF of the chirped train
signal. Some examples are presented in discussed in detail in
Section IV.

We will see that, generally, the PSFs of chirped trains
are similar to those of conventional chirped signals. The
differences between the AFs of the conventional chirps and
the chirped trains are, however, more notable: the latter appear
to combine some properties of a conventional chirp signal,
favorable in the context of range resolution and “coded” trains
of pulses, favorable in Doppler detection of moving objects.

III. DESIGNING THE CHIRPED TRAIN WAVEFORM FOR
MULTISPECTRAL IMAGING APPLICATIONS

In Section II we discussed the chirped train waveform and
the three main quantities useful in its description: the power
density spectrum, the PSF, and the AF. Specifically, we pointed
out (Section II-B) that the characteristic isolated sub-band

power density structure of the chirped train signal can be of
particular advantage in a “multispectral” imaging scenario.

It is the objective of this Section to specify constrains on
the parameters of a chirped train signal which would result
in the required sub-band structure of its power density.

We consider a chirped train waveform composed of rect-
angularly modulated oscillatory pulses characterized by the
following parameters: the center frequency, νf = 1/τ f , the
bandwidth, Bf , and the duration T f = N fτ f . The corre-
sponding chirped train parameters are: νg = 1/τg, Bg, and
T g = Ngτg. In the discussion presented here, we limit
ourselves to a situation in which the train parameters νg and
Bg are already fixed, and we try to determine an appropriate
set of parameters characterizing the pulse. Ultimately, more
precise bounds on the train and pulse parameters can be
derived by formulating an optimization problem.

Our analysis requires that the following conditions are met:
(i) the signal spectrum contains some non-overlapping sub-

bands (harmonics),
(ii) the spectrum of an individual pulse in the train overlaps

the harmonics of interest, and,
(iii) the pulses in the train do not overlap in time.
As discussed in Section II-B, Eq. (34) the harmonics of order

k < kmax =
νg

Bg

(46)

are well separated.
The requirement (ii) that the spectrum of an individual pulse

overlaps some separated harmonics of the order k is equivalent
to the request that the pulse center frequency νf is of the order
of kνg and smaller than ν max = kmax νg or, equivalently,

νf ≈ kνg <
ν2

g

Bg

. (47)

We also require, (iii), that the pulses in the train do not
overlap in time, i.e., that the condition (9) holds; this restriction
appears natural when the train is generated by repeatedly
driving a single source of pulses.

The two conditions, (9) and (47), result in the following
restriction on the number of cycles in the pulse:

N f = T fνf <
νf

νg

(
1− βg

Ng − 1

2Ng

)
≈ k

(
1− βg

Ng − 1

2Ng

)
,

(48)
with k obeying the inequality (46).

The conditions for the pulse bandwidth can be formulated
as follows: since the pulse bandwidth cannot be smaller than
the inverse of its duration, then,

Bf ≥
1

T f

> νg

(
1− βg

Ng − 1

2Ng

)
. (49)

Further, the center frequency νf of the individual pulse in
the train (understood as a position of the maximum in its
spectrum) cannot be lower than its bandwidth, hence

νf ≥ Bf > νg

(
1− βg

Ng − 1

2Ng

)
. (50)
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TABLE II: Pulse and train parameters used in the examples

case νf (GHz) T f (ns) νg (GHz) Bg (GHz) Ng

(a) 2.200 0.91 0.420 0.040 500

(b) 2.200 0.91 0.420 0.090 500

Eqs. (50) and (47) lead to the following useful relation

Bf > kBg

(
1− βg

Ng − 1

2Ng

)
. (51)

From the point of view of imaging, range resolution is an
important parameter. Since the widths of the sub-bands are,
approximately, given by k Bg, therefore the expected range
resolution for a single sub-band is

∆ r =
c

2 k Bg

≡
c νg

2 νf Bg

. (52)

With the harmonic orders limited by (34), the best attainable
resolution (for k . kmax = νg/Bg) is

∆ rmin &
c

2 νg

. (53)

Another observation is in order here. As the energy redis-
tribution is controlled by a single parameter of the transmitted
waveform – the chirped train bandwidth – one can envisage
a data collection scheme alternating between two modes: (i)
the high-resolution imaging mode utilizing the entire pulse
bandwidth, and (ii) the “spectroscopic” multi-band mode in
which the energy is repartitioned into several separate sub-
bands. The mode (i) would provide data for analyzing the
scene and identifying spatial areas and objects of interest.
Then, the data obtained in mode (ii) could be used to extract
further properties of already localized objects.

IV. EXAMPLES OF CHIRPED TRAIN WAVEFORMS AND
THEIR PSFS AND AFS

To illustrate the behavior of a propagating chirped train
signal we consider examples in the radar domain.

Parameters of the chirped train signal, i.e. parameters of
the single pulse and the chirped train, are given in Table II.
Parameters in case (a) were chosen to approximately reproduce
the total frequency band of the measurements of Ref. [8]. Case
(b) is characterized by an increased chirped train bandwidth
Bg.

The pulse carrier frequency in both cases was chosen such
that its power density spectrum overlaps the 4th, 5th, and 6th
harmonics of the chirped train.

We start our discussion with case (a):
- The power densities, wg(ν), wf(ν) and W (ν), corre-

sponding to this case are plotted in Fig. 3(a).
- PSFs representing the windowed harmonics, k = 4,
k = 5, and k = 6, are plotted in Fig. 4. We note that
the widths of these distributions and hence the resulting
range resolutions are in agreement with the predictions
of Eq. (52).

(a)

(b)

Fig. 3: Power densities of the train sequence (wg(ν)), the pulse
(wf (ν)), and the full signal (W (ν)), for the examples (a) and
(b) of Table II. Normalization of the power spectra is arbitrary
to facilitate comparison of their shapes.

- In Fig. 5 the power spectrum W (ν) (the same as in
Fig. 3(a)) is compared with the power spectrum W c(ν)
of the “equivalent” conventional chirp characterized by
the parameters

νc = 2.12 GHz, T c = 1, 190 ns, Bc = 1.08 GHz ,
(54)

where the equivalence is meant in the sense of the same
duration, approximately the same total bandwidth, and
the same total energy (i.e., integrated power density) of
the signals.8

We find (Fig. 5) that while the energy in the conventional
chirp is uniformly spread over the entire bandwidth, in the
chirped train it is concentrated in several separate sub-bands.

The observed energy distribution of the chirped train signal
may have important and desirable consequences. In particular,
the separated frequency sub-bands may be used more effec-
tively in situations where we are interested in detecting effects
of material dispersion or identifying material properties of the
scatterer.

If the conventional chirped signal W c(ν) of Fig. 5 were to
be used for the purpose of identifying material properties then,
in the data processing stage, one would have to partition the
1 GHz frequency band into, e.g, 5 sub-bands and, for each of

8 These conditions imply that the train and conventional chirp signal
amplitudes are different.
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the sub-bands create an image using approximately 1/5-th of
the total signal energy.

Using the chirped train signal (W (ν) in Fig. 5), on the
other hand, one can utilize a smaller number (here 3) of
more widely separated sub-bands, each containing a larger
amount of energy and thus providing a better signal-to-noise
(S/N) ratio. The gain due to higher S/N ratio may compensate
for the absence of some frequency intervals, especially if we
are interested in image differences for more widely spread
frequencies.

A note is in order here. There is a price for utilizing the
individual sub-bands of the chirped train signal. It is the
same price one has to pay when partitioning a conventional
chirp: while utilizing the full signal bandwidth gives rise to
a high resolution (about 1.0 GHz in the discussed example,
corresponding to the spatial resolution of about 15 cm), using
frequency sub-bands of a chirped train signal causes resolution
deterioration to about 75 cm.

However, using the chirped train waveform poses an inter-
esting possibility to alleviate the above mentioned drawback.
Parameters chosen in case (a) led to the segmented power
spectrum with non-overlapping harmonics. Changing just one
parameter – increasing the train chirp bandwidth Bg from
0.040 GHz to 0.090 GHz (case (b)) – causes the harmonics to
start overlapping. The resulting power distribution is shown
in Fig. 6. But it is Fig. 7, the plot of the corresponding
PSFs, which we would like to comment on in more detail.
We observe that power density spectrum with isolated, non-
overlapping sub-bands gives rise to PSF with very high side-
lobes (which effectively would lead to a significant image de-
terioration). However, the chirped train signal with overlapping
sub-bands and the conventional chirp signal, in spite of very
different power density distributions, result in closely similar
PSFs. Therefore, both signals provide nearly identical high
resolution of about 15 cm when the imaging process utilizes
the frequency bandwidth

Bw = 2.66 GHz− 1.58 GHz = 1.08 GHz (55)

approximately equal to the pulse bandwidth Bf . We also
observe that the total signal energy within the window is
reduced rather insignificantly (approximately by 20%).

The above observations suggest a particularly attractive
measurement scenario of alternating (perhaps instantly) be-
tween the two modes:

(i) the full-band high-resolution mode utilizing the band-
width Bw, approximately equal the pulse bandwidth Bf

(Figs. 3(b) and 6), and,
(ii) the ‘‘spectroscopic”, multi-band mode in which the

energy is repartitioned into several separate sub-bands,
as visualized in Figs. 3(a) and 5.

The first mode would provide a high temporal (and thus
spatial) resolution, while the second would offer a more
detailed spectral information however, with a lower resolution.
In order to switch between these modes one would only need
to change a single parameter: the train chirp bandwidth Bg.

We also note that the scenario discussed above could be
easily modified in various other ways. Since the constraints

Fig. 4: Absolute values |χF (t)| of the point-spread functions
for the three selected frequency sub-bands in Fig. 3(a), nor-
malized to unity at the peak.

Fig. 5: Power spectrum W (ν) of the chirped train with
bandwidth Bg = 0.040 GHz (Table II (a)) compared to
the spectrum Wc(ν) of the “equivalent” conventional chirped
signal (54), with the same total energy, duration, and total
bandwidth.

(50) and (48) provide considerable latitude in choosing the
waveform parameters, one could design signals with more
or fewer sub-bands, with better equalized sub-band energies,
lower or higher harmonic orders, etc. These variations might
offer interesting possibilities of novel applications in radar
sensing and imaging.

To complete the discussion of the described two-mode
scenario we will present examples of the respective AFs of
the chirped train signal.9

First we concentrate on the problem of the spectroscopic,
multi-band mode (ii) characterized by non-overlapping har-
monics (Table II, case (a)) and, subsequently on the full-band
high-resolution mode (i) characterized by the parameters of

9Trains of non-uniformly spaced pulses (including linearly varying inter-
vals) have been analyzed in Ref. [4]. However, the main purpose of that
analysis was to form thumbtack-type AFs, and trains with linear interval
variation have not been identified as a distinct class of waveforms.
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Fig. 6: Power spectrum W (ν) of the chirped train with an
increased train bandwidth Bg = 0.090 GHz (Table II (b)),
hence nearly or partly overlapping harmonics, compared, for
reference, to the same conventional chirp spectrum Wc(ν) of
(54).

Fig. 7: Absolute values of the point-spread functions corre-
sponding to the conventional chirp and the chirped train power
spectra of Figs. 5 and 6. All the PSF are computed with a
rectangular frequency window from 1.58 to 2.66 GHz and
their values at t = 0 represent the total signal energies within
the window (assuming unit energy of a single pulse in the
train).

Table II, case (b).
One of the AFs arising in the spectroscopic, multi-band

case of non-overlapping harmonics is shown in Fig. 8(a); this
AF is computed for the central, 5th harmonic, windowed in
frequency in the same way as the corresponding PSF in Fig. 4.
As expected, the AF corresponding to this single separated
frequency sub-band closely resembles the ridge-type structure
of the AF of a classical chirp (e.g., [7], Ch. 4.2). To visualize
this similarity, in Fig. 8(b) we plot AF of a classical chirp
characterized by the parameters

νc = 2.12 GHz, T c = 1, 190 ns, Bc = 0.20 GHz , (56)

i.e., by the power spectrum which, with a very good approx-

(a)

(b)

Fig. 8: Plots of the AF for the chirped train signal, case (a)
of Table II, computed with a frequency window covering the
5th harmonic (top), compared to the approximately equivalent
conventional chirp with the parameters given by Eq. (56)
(bottom).

imation, can be considered equivalent to the power spectrum
of the 5th harmonic of the considered chirped train signal.

As the next example we discuss the AF corresponding to
the case of overlapping harmonics (Table II, case (b)). The AF
computed, in analogy with the PSF of Fig. 7, with the effective
bandwidth of Bw = 1.08 GHz, is presented in Figs. 9 and
10. Again, for the quantitative comparison, we also plot there
the AF of the “equivalent” classical chirp (with parameters
specified in (54)).

In order to facilitate the visualization and the discussion,
the AFs are shown in two different frequency ranges: a larger
range (up to 0.6 GHz) and a much smaller range (up to
0.008 GHz). The latter scale is comparable to the Doppler
resolution than can be achieved with the considered signal.

We observe that the time resolutions ∆t in the AFs for
the chirped train signal and the equivalent classical chirp are
given by the inverse of the effective frequency bandwidths
(1/Bw and 1/Bc). Also, in both cases, the Doppler-frequency
resolutions ∆ν are inversely proportional to the total signal
durations (1/T g and 1/T c). For the classical chirp, the above
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estimates are fully compatible with the estimates of [7].
However, as seen from the Figures, the overall structures

of the AFs of the conventional chirped signal and the high-
resolution-mode chirped train are entirely different. As is well
known (e.g., [7], Ch. 4.2) and as we observed in the example
discussed above (Fig. 8), the AF of a classical chirp exhibits
a ridge along

ν

t
≈ Bc

T c

(classical chirp) ; (57)

the slope in the above relation represents the linear-frequency-
modulation “shear” effect. This feature is clearly seen in
Figs. 9(c) and 10(c), as well as 8(b).

On the other hand, the AF of the chirped train signal consists
of rows of isolated peaks.10 This behavior is similar to that
of a uniformly-spaced coherent train of identical pulses ([7],
Ch. 4.3). In particular, as marked in Fig. 10(a), the time
spacing between the peaks is about τg = 1/νg and the
frequency spacing is νg. There are infinitely many rows of
peaks distributed periodically in ν, but progressively weaker
with the increasing Doppler frequency. However, the chirped
train signal results in the rows being slanted (sheared) by the
amount proportional to the chirp bandwidth. The analysis of
Appendix B shows that the slope ν/t of the shear is

ν

t
≈
νf Bg

νg T g

(chirped train) . (58)

Further, Eqs. (57) and (58), as well as the estimates indicated
in Fig. 10, show that:

1) The narrow peak (time resolution ∆t ≈ 1/Bw) of the
PSF of the chirped train χF (t) = χF (t, ν = 0) can be
attributed to the fact that only one AF peak (at t = ν =
0) remains on the t axis, and the remaining ones are
shifted in frequency as a result of “shearing”.
The requirement that the remaining peaks are absent
from the PSF (i.e., from the ν = 0 axis) is that the
frequency shift of the peak located at t ≈ τg is larger
than its width, i.e., from Eq. (58) and Fig. 10(b),

νf Bg

ν2
g T g

>
1

T g

. (59)

This condition is equivalent to
νf

νg

Bg > νg . (60)

Since νf/νg ≈ k is, approximately, the train harmonic
number k in the considered frequency window [ν1, ν2],
the last condition means that the harmonic width kBg

is larger than the inter-harmonic spacing νg; in other
words, the harmonics overlap.

2) The AFs in Figs. 9(a,b) and 10(a,b) represent signals
for which the pulse bandwidth Bf exceeds the inter-
harmonic frequency spacing νg. In this case the peaks
in each row of the AF are separated, because 1/Bf <
1/νg ≡ τg. As soon as Bf decreases below νg, the peaks
start to overlap and start to form an increasingly smooth

10 By rows we mean sequences of peaks aligned with the t axis, while
colums are aligned with the ν axis.

ridge, i.e., the AF of the train becomes more similar to
that of a classical chirp.

3) In our example, when we reduce the chirp bandwidth
Bg to a value for which the harmonics about νf do not
overlap and window only one harmonic (frequency sub-
band), we have Bc ≈ (νf/νg)Bg and, since T c = T g,
the shear slopes (57) and (58) become identical.

To summarize, in the full-band “high-resolution mode”,
when the pulse spectrum and the selected frequency window
extend over several overlapping train harmonics, the chirped
train AFs exhibit some significant differences compared to
those of the “equivalent” classical chirp. The most striking
contrast is the appearance of separate peaks in the chirped
train signal, as opposed to a continuous ridge for the classical
chirp. This feature may reduce continuous time-frequency
ambiguities to discrete ones, and thus offer advantages in
Doppler-based object indication.

V. SAR IMAGING WITH CHIRPED TRAINS OF PULSES

We consider now the chirped train signal in the context of
spotlight synthetic-aperture radar (SAR) imaging.

For definiteness, we assume in the following that the spec-
trum of the received signal, reflected from the scene, has been
windowed to some frequency band [ν0−B0/2, ν0 +B0/2] ≡
[νmin, νmax]; it may contain one or more harmonics of the
train chirp. The scene is located on the z = 0 plane and
centered at the origin 0. We assume the scene contains J
stationary point scatterers located at points ρj = (xj , yj) on
the scene plane and characterized by isotropic complex reflec-
tivities Aj . The scene is being observed from an aperture γ(θ)
located in a horizontal plane, parameterized by the azimuthal
angle θ measured relative to the scene center and defined by
the angular interval [θmin, θmax] of size Θ = θmax−θmin. The
signal F (t) is being emitted and the reflected signal received11

at aperture points θs, s = 1, . . . , S. The received signals
are being recorded as functions of time at all aperture points
and the resulting phase history is used to form the image
of the scene. According to the conventional time-domain
back-projection procedure [14], [15], [16], the complex image
amplitude u, as a function of a scene point ρ, is given by12

u(ρ) =
1

S

S∑
s=1

J∑
j=1

Aj χF (T j(ρ, θs)) =
J∑
j=1

Aj uj(ρ) , (61)

where

uj(ρ) =
1

S

S∑
s=1

χF
(
T j(ρ, θs)

)
(62)

is the image amplitude due to the j-th scatterer, and

T j(ρ, θ) =
2

c

(
|γ(θ)− ρ| − |γ(θ)− ρj |

)
(63)

is the difference in the signal round-trip travel times between
the SAR platform and the image and scatterer location points.

11 We adopt the “stop-go” approximation, justified in airborne SAR.
12 We omit here various propagation-related factors, which are not essential

in analyzing the image resolution. We also omit the SAR phase-history
processing details related to extracting rapid phase variation associated with
the scene center.
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(a)

(b)

(c)

Fig. 9: Absolute values of the AF for the chirped train signal
with overlapping frequency bands, Table II, case (b), (top and
middle), and for the approximately equivalent conventional
chirp with the parameters of Eq. (54) (bottom).

(a)

(b)

(c)

Fig. 10: Contour plots of the AFs corresponding to Fig. 9.
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The expression (61) can be immediately used to form the
image u(ρ) in terms of the known PSFs χF of the signal
and the assumed SAR trajectory γ(θ).

As an example of SAR imaging utilizing frequency sub-
bands of signals composed of chirped trains of pulses we
consider signals (a) and (b) from the Table II and form
images in the “spectroscopic” and “high-resolution” modes;
in the spectroscopic mode we concentrate on the sub-band
corresponding to the signal’s fifth harmonic, k = 5.

We consider a simulated scene consisting of J = 4 point
scatterers of identical reflectivities (assumed to be Aj = 1)
located at ρ2 = (0, 0), ρ2 = (3.0 m, 0), ρ3 = (0, 3.0 m), and
ρ4 = (6.0 m, 6.0 m. Finally, we assume a synthetic aperture
[θmin, θmax] = [−3◦, 3◦] at the elevation angle β = 45◦. For
the purpose of forming an image, the distance R between the
scene and the SAR platform is irrelevant, as long as R >
L2/λf , where L is the scene size and λf is the wavelength
corresponding to the pulse center frequency. In our case L =
7 m and λf ≈ 0.13636 m, so this condition amounts to R >
360 m.

The estimates of down-range and cross-range resolutions
are

Rd =
c

2kBg cosβ
, Rc =

λf

2Θ cosβ
. (64)

With our parameters, we obtain resolutions Rd ≈ 1.06 m and
Rc ≈ 0.92 m.

Images are formed by using the time-domain back-
projection formula (61) directly. According to the Nyquist
sampling criteria, the minimum required number of (uniformly
distributed) aperture points is S ≈ L/Rc. For our very small
“scene”, just a few points (S & 7) would be sufficient;
however, in the computations we take the number of aperture
points S = 61 (spaced by 0.1◦), appropriate for a more typical
scene patch of size L ≈ 50 m.

Fig. 11(a) shows the resulting image obtained in the spec-
troscopic mode, based on the fifth harmonic sub-band of
the spectrum. In agreement with the estimates (64), it has
approximately the same resolution in the vertical (cross-range)
and horizontal (down-range) directions. The images of the
scatterers have relatively high sidelobes in both directions.
These sidelobes could have been easily reduced by applying
smooth windowing in the angle and frequency. However, in
order not to introduce unnecessary image modifications, we
used the back-projection formula (61) literally, without any
additional filtering.

Fig. 11(b) shows the image of the same scene obtained
in the high resolution mode. As anticipated, we observe the
significantly improved range resolution. We note that the
azimuthal resolution could be improved by increasing the
aperture size.

VI. A POSSIBLE REALIZATION OF CHIRPED TRAIN SIGNAL
GENERATION

Recent technological advances in programmable waveform
generators, especially those based on the field-programmable
gate arrays (FPGAs) make it possible to realize a wide variety
of signal shapes (e.g., [17], [18]), in particular the chirped-
train type signals discussed here.

(a) (b)

Fig. 11: Intensity images, |u(ρ)|, obtained in the “spectro-
scopic” (a) and “high-resolution” (b) modes. The horizontal
(x) and vertical (y) axes correspond to the down- and cross-
range directions.

A scenario can be considered in which the transmitting
antenna is driven by an arbitrary waveform generator (AWG)
and an appropriate wide-band amplifier. For example, the
generating device could be AWG 7122B manufactured by
Tektronix, Inc. According to the data sheet of this instrument ,
it is able to generate long complex waveforms in the frequency
range up to 9.6 GHz with the bandwidth of up to 5.3 GHz.
The extended-memory model can store a sequence of 64 · 106

sample points.

VII. SUMMARY

The main subject of this work was the analysis of properties
of a particular type of a waveform – a chirped train of short
pulses. The theoretical analysis and examples indicate that
such waveforms exhibit a number of interesting features which
may prove useful in radar imaging scenarios:

1) The discrete nature of the train consisting of pulses
emitted at linearly varying (chirped) time intervals and
the average repetition frequency νg gives rise to spec-
tra, such as shown in Fig. 3, which involve a quasi-
periodic sequence of frequency bands centered at integer
multiples kνg (with k = 1, 2, . . . ) of the “fundamental
frequency” νg.

2) The widths of the frequency bands are controlled by the
chirp bandwidth Bg of the train and grow proportionally
to the “harmonic order” k.

3) Superimposed on that spectrum is the power distribution
of a single pulse. Since the pulses are assumed not to
overlap, their duration is limited and their bandwidth Bf

cannot be smaller than the train repetition frequency νg

(Eq. (50)).
The feature 3) indicates that the pulse spectrum may overlap

more than one harmonic (Figs. 3(a) and (b)). At the same time,
the properties 1 and 2 allow manipulating the train structure
so that the resulting spectrum of the full signal may vary from
a quasi-continuous wide-band distribution to a distribution
exhibiting separate non-overlapping sub-bands. These widely
different spectra may be used in different imaging scenarios,
such as high-resolution imaging mode utilizing the entire
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pulse bandwidth vs. multi-spectral or material-identification
imaging mode with lower resolution determined by the widths
of consecutive sub-bands. In addition, in the multispectral
mode, the signal energy is concentrated in several separate
sub-bands, each containing a larger energy fraction than a
partitioned, “equivalent”, conventional chirped signal, hence
a better signal-to-noise ratio can be obtained. The ability
of utilizing programmable waveform generators and switch-
ing between the two modes (perhaps on-the-fly, during the
measurements) by varying just one waveform parameter, the
chirped train bandwidth Bg), may render realization of the
proposed technique practical.

In addition, the appearance of separate peaks in the AF
of chirped train signal as opposed to a continuous ridge for
the classical chirp, may reduce continuous time-frequency
ambiguities to discrete ones, and thus offer advantages in
Doppler-based object indication.

The main emphasis in the present work was on the structure
of the train of pulses, its spectrum, and its significance in
imaging and remote sensing. At this stage we did not include
attenuation or jitter effects. Both types of effects can be
included in our analysis in a relatively straightforward way
and will constitute the content of future papers.

APPENDIX A
PSF AND AF FOR A CHIRPED TRAIN SIGNAL COMPOSED OF

RECTANGULARLY MODULATED OSCILLATORY PULSES

We analyze here an example of a chirped train signal
composed of rectangularly modulated oscillatory pulses. We
obtain analytic expressions for the single-pulse PSF and AF
which are valid for an arbitrary (in particular small) number
of oscillations. They are then used to build the PSF and AF of
the chirped train signal, and applied in the examples presented
in Sections IV and V.

PSF χf (t) of a rectangularly modulated oscillatory pulse.
We assume a rectangularly modulated oscillatory pulse

f(t) =
2√
T f

rect

(
t

T f

)
sin
(
2π νf t

)
(65)

with an integer number N f = νf T f of cycles, which ensures
vanishing of the DC component of the signal. For definiteness,
the pulse f(t) is defined to have unit L2 norm (unit positive-
frequency “energy”), which corresponds to

χf (0) =

∫ ∞
0

dν |f̃(ν)|2 = 1 . (66)

The Fourier transform of the pulse (65) is

f̃(ν) = i
√
T f

[
sinc(T f (ν − νf))− sinc(T f (ν + νf))

]
=

i

π
(−1)N f−1 2√

N fνf

ν2
f

ν2
f − ν2

sin
(
πT f ν

)
,

(67)

which specifies the pulse effective bandwidth Bf = 1/T f =
νf/N f . We reiterate that the absence of the DC component
(f̃(0) = 0) implies that the integral of the PSF χf (t) vanishes.

The PSF χf (t) (Eq. (44)) of the pulse, defined by Eq. (65),
can be expressed in terms of the sine and cosine integrals Si(x)

and Ci(x) ([10], Ch. 5). The result is

χf (t) =
i

2π2N f

{
XN f

(t) +X−N f
(t)− 2X0(t)

}
, (68)

where

XN (t)

=
[
sin(2πνft)− 2π (νft−N) cos(2πνft)

]
Ci
(
2π (νft−N)

)
−
[
cos(2πνft) + 2π (νft−N) sin(2πνft)

]
Si
(
2π (νft−N)

)
,

(69)

with Ci(−|x|) = Ci(|x|) − iπ. Those expressions can be
obtained as a limit of the more general formula (76) for the
pulse AF or, alternatively, by using the basic integral ([19],
Eq. (3.355.1)),∫ ∞

0

dx
1

(b2 + x2)2
e−µx

=
1

2b3
{

sin(bµ) Ci(bµ)− cos(bµ) (Si(bµ)− π/2)

− bµ
[
cos(bµ) Ci(bµ) + sin(bµ) (Si(bµ)− π/2)

]} (70)

and continuing it analytically to complex µ and negative b2,
taking into account the logarithmic branch cut of Ci(z) along
the negative real axis. The logarithmic singularities cancel in
the sums of Eqs. (68) and (69).

It is well known ([11], [20]) that in the case of a narrow-
band (a large number of oscillations) pulse of Eq. (65), the
fairly complicated function (68) can be well approximated by
the simple expression

χ̂f (t) = tri

(
t

T f

)
e− 2πi νf t , (71)

where tri(x) = 1− |x| for |x| ≤ 1 and 0 otherwise.
Eq. (71) follows from the approximate analytic representa-

tion

f̂A(t) =
1√
T f

rect

(
t

T f

)
e− 2π νf t , (72)

obtained from Eq. (65) by replacing the factor oscillating
with the carrier frequency νf with its approximate analytic
representation

sin(2πνft)
A→ i

2 e−2πi νf t . (73)

(Alternatively, Eq. (71) can be derived from the approximation
to Eq. (67), |f̃(ν)|2 ≈ N f/(νf) sinc2

(
T f (ν − νf)

)
, valid for

|ν − νf | � νf .) The expression (71) preserves an important
property of the original pulse, namely the absence of the DC
component.

It is interesting to note (Fig. 12) that χ̂f is a good approx-
imation to χf (t) already for small N f . Even for N f = 1 the
deviation |χ̂f (t)−χf (t)| does not exceed 0.114, and it is less
than 0.02 for N f ≥ 6.

AF χf (t, ν) of a rectangularly modulated oscillatory pulse.
We provide here the closed-form expression for the AF of
a rectangularly modulated pulse of Eq. (65). The obtained
expression is a generalization of Eq. (68) for the PSF.
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(a)

(b)

Fig. 12: Real parts and absolute values of the exact, χf (t),
and approximate, χ̂f (t), PSFs of the rectangularly modulated
oscillatory pulse with Nf = 1 (a) and Nf = 2 (b) oscillations.

We evaluate the AF as defined by Eq. (45) and modified by
the addition of a frequency-domain windowing, i.e.,

χf (t, ν; ν1, ν2) :=

∫ ν2

ν1

du e−2πiut f̃(u+ 1
2 ν) f̃∗(u− 1

2 ν)

(74)
for 1

2 |ν| ≤ ν1 < ν2.
By inserting (65) into (74) and defining the following new

variables and parameters,

τ ≡ νf t, ξ ≡
ν

2νf

, x ≡ u

νf

, w1,2 ≡
ν1,2

νf

, N ≡ N f , (75)

we have

χf

( τ
νf

, 2 νf ξ; νf w1, νf w2

)
≡ Y N (τ, ξ;w1, w2)

=
2

π2N

∫ w2

w1

dx e− 2πi τx sin(πN (x+ ξ)) sin(πN (x− ξ))
[(x+ ξ)2 − 1] [(x− ξ)2 − 1]

.

(76)

Because of the symmetry relation satisfied by the AF

χF (− t,− ν) = χ∗F (t, ν) , (77)

we can assume, with no loss of generality, that ν ≥ 0 (hence
ξ ≥ 0), and that τ is arbitrary and real. We are thus concerned
with the region

0 < ξ ≤ w1 < w2 . (78)

In the absence of windowing, the lower and upper integration
limits are w1 = ξ and w2 = ∞, corresponding to ν1 = ν/2
and ν2 =∞.

The integrand of Eq. (76) can be evaluated in a straight-
forward way, by using the partial-fraction decomposition as
well as trigonometric identities, and expressed in terms of the
sine and cosine integrals. The individual partial-fraction terms
have poles on the integration path. However, since the entire
integrand is regular, the integration contour from w1 to w2

can be deformed to circumvented the poles in an arbitrary –
if only consistent – way. We choose to evaluate the individual
terms according to the principal-value prescription. The final
expression for the AF assumes then the form

Y N (τ, ξ;w1, w2) = Y N (τ, ξ, w2)− Y N (τ, ξ, w1) , (79)

where
Y N (τ, ξ, w)

=
1

16π2N ξ

[
ΛN (τ, 1 + ξ, w)

1 + ξ
− ΛN (τ, 1− ξ, w)

1− ξ

− ΛN (τ,− (1 + ξ), w)

1 + ξ
+
ΛN (τ,− (1− ξ), w)

1− ξ

]
(80)

with

ΛN (τ, b, w) = e− 2πi (τ+N) b
[
E i
(
2π τ (w − b)

)
− E i

(
2π (τ +N) (w − b)

)]
+ e− 2πi (τ−N) b

[
E i
(
2π τ (w − b)

)
− E i

(
2π (τ −N) (w − b)

)]
.

(81)

In the last formulae the function E i(x) is defined, for real x,
in terms of the cosine and sine integrals ([10], Ch. 5) as

E i(x) := Ci(|x|)− i Si(x) ; (82)

the absolute value of x in Eq. (82) is a reflection of the
principal-value definition of the integral (76). Since Ci(z) has
a logarithmic singularity at z = 0, evaluating the formulae
(79) to (81) also requires some care near the points at which
the argument of any of the functions E i vanishes, to ensure
cancellation of the logarithmic terms in their sum.

We note that the expressions (68) – (69) for the (unwin-
dowed) pulse PSF (44) can be obtained from the formula (76)
by taking the limits ν → 0 (i.e., ξ → 0), ν1 → 0, and ν2 →∞.
This procedure requires, in particular, expanding the functions
ΛN (τ, b, w) in the parameter b, in order to obtain the ξ → 0
limit of Eq. (80).

As an example, we show in Fig. (13) the AF of the pulse
described by the parameters (b) of Table II, with additional
frequency windowing. In the absence of windowing, the ν = 0
section of this plot becomes identical to the PSF of Fig. 12(b).

APPENDIX B
DISCUSSION OF PROPERTIES OF THE AF OF CHIRPED

TRAINS OF PULSES

We sketch here a derivation of the main properties of the
AF of a chirped train of pulses, indicated in Fig. (10) and in
Eq. (58).
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Fig. 13: The absolute value of the AF of a single pulse, with
the parameters (b) of Table II, windowed in the frequency
interval [1.580 GHz, 2.660 GHz].

Our starting point is the expression (43) for the train AF
in terms of the AFs of the individual pulses. In terms of the
variables p ≡ m− n and q ≡ m+ n we have

χF (t, ν) =
∑
p,q

eπiντg [q−βg (q2+p2)/4Ng]

χf

(
t− τg p

(
1−

βg

2Ng

q

)
, ν

)
,

(83)

where the summation ranges are as in Eq. (20). We assume a
train much longer than the pulse (Ng � 1) and of a small
relative bandwidth (βg � 1). We are also interested in a
“high-resolution” problem, such as the problem (b) of Table II,
in which the pulse frequency band covers several partially
overlapping harmonics of the signal; this implies, in particular,
νf ≈ k νg with k > 1 (k = 5 in the example problem). In
addition, we concentrate on a limited domain of the (t, ν)
space: (i) |t| � T g and (ii) |ν| < νf ≈ k νg. As we will very
soon show (and in accordance with the results shown in Figs. 9
and 10), the AF (83) exhibits a lattice of peaks spaced by τg

and νg in the time and frequency directions – similarly to the
bed-of-nails AF structure of a uniform train ([7], Ch. 4.3).
Further, we will see that each term in the p sum in Eq. (83)
generates a row of peaks at t ≈ p τg. Therefore, the condition
(i) implies that |p| � Ng and the condition (ii) means that
our analysis holds up to about k first rows of peaks in the AF.

Under the above assumptions, the ν-dependence of the pulse
AF can be neglected, hence the pulse AF can be replaced with
its PSF (44). Therefore, the AF (83) can be approximated by

χF (t, ν) ≈
∑
p,q

eπiντg [q−βg (q2+p2)/4Ng]

∫ ∞
0

du e− 2πiu [t−τg p (1−βgq/2Ng)]
∣∣f̃(u)

∣∣2 , (84)

which is equivalent to

χF (t, ν) ≈
∫ ∞

0

du
∣∣f̃(u)

∣∣2
Ng∑

p=−Ng

e−2πiu (t−pτg) e−πi βgτg ν p
2/4Ng

Ng−|p|∑
q=−(Ng−|p|)

∆q=2

eπi τg (ν−p βgu/Ng) q e−πi βgτg ν q
2/4Ng .

(85)

In the above expression both the p and q sums depend on the
integration variable u. However, the u-dependent phase in the
exponent of the q sum vanishes for p = 0 and for p 6= 0
can be bounded as

∣∣π τg βg p q u/Ng

∣∣ ≤ π βg τg |p|u. Since
βg � 1, this u-dependence of the phase is much weaker than
in the p-sum, and thus u in the q-sum may be replaced with
the center frequency νf of the pulse.

Further, since |ν| < k νg, the phase quadratic in p can be
bounded by ∣∣∣∣π βg

4Ng

τg ν p
2

∣∣∣∣ < π k
βg

4Ng

p2 . (86)

Therefore, it is negligible provided

|p| �

√
4Ng

π k βg

; (87)

this constraint, which we assume to hold, is stronger than the
originally imposed condition |p| � Ng, but it is still only a
very weak restriction.

The above reasoning implies that the AF (85) can be
approximated by

χF (t, ν) ≈
∫ ∞

0

du
∣∣f̃(u)

∣∣2 ∑
p

e−2πiu (t−pτg)

Ng∑
q=−Ng ,∆q=2

eπi τg (ν−p βgνf/Ng) q e−πi τgβg νq
2/4Ng

=
∑
p

χf (t− pτg)S

(
ν − p

βgνf

Ng

,
βgτg

2Ng

ν

)
,

(88)

with p satisfying the condition (87) and with

S(ν, κ ν) :=

Ng/2∑
n=−Ng/2

e 2πi ν τg n e−2πi νκn2

. (89)

Evidently, the factor χf in Eq. (88) is responsible for the
sequence of peaks in time, of shapes determined by the pulse
PSF and spaced by τg. Properties of the factor S are less
obvious. In the absence of the train chirp (βg = 0, hence
κ = 0), it gives rise to a periodic sinc function,

S(ν, 0) = (Ng + 1) sincNg
(T gν) (90)

(cf. Eq. (21)), hence the AF in this case reduces to the expected
bed-of-nails with the spacing Ng/T g = νg in frequency. The
effect of βg > 0, and thus κ > 0, is two-fold: First, the shift in
its first argument gives rise to the shearing of the bed-of-nails,
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i.e., the frequency shift by p βgνf/Ng of the p-th column of
peaks. The second effect is the distortion of the ν-dependence
of the peaks, such as observed in their second row in Figs. 9(a)
and 10(a). To describe this behavior, we consider the m-th row
of peaks and set ν = mνg + η, with |η| � νg. The sum in
Eq. (89) can be then approximated by the integral over the
variable s := τgn,

S

(
mνg + η ,

βgτg

2Ng

(mνg + η)

)
≈ νg

∫ Tg/2

−Tg/2

ds e 2πi ηs e−2πimBgs
2/2T g

(91)

– an expression closely analogous to the Fourier transform of
the conventional chirp signal. For m = 0, the result is simply

S

(
η ,

βgτg

2Ng

η

)
≈ Ng sinc(T gη) , (92)

the same as for βg = 0. For m ≥ 1 the integral (91) can be
expressed in terms of the function

E(x) := C(x)− i S(x) , (93)

where C and S are the Fresnel cosine and sine integrals ([10],
Ch. 7.3),

C(x) :=

∫ x

0

dt cos
πt2

2
, S(x) :=

∫ x

0

dt sin
πt2

2
. (94)

The result is

S

(
mνg + η ,

βgτg

2Ng

(mνg + η)

)
≈ νg

√
T g

2mBg

e−iπT gη
2/mBg

[
E
(√

2T g

mBg

(
mBg

2
+ η

))
+ E

(√
2T g

mBg

(
mBg

2
− η
))]

≈ νg

√
T g

2mBg

e−iπT gη
2/mBg rect

(
η

mBg

)
,

(95)

where the last, crude, approximation applies when T gBg �
1. The formulae (88), (92), and (95) imply Eq. (58) for the
slope of the shear and explain the main features of the AFs
represented in Figs. 9 and 10.
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Appendix B

Doppler effects in time-resolved intensity of optical pulses

propagating through moving particulate atmospheric media

Abstract

Propagation of optical and infrared pulses through moving atmospheric particulate
media is investigated. The radiative transfer equation (RTE) is generalized to describe
effects of the Doppler frequency shift on the time-resolved specific intensity of pulses.
The overall effect of the frequency shift is estimated and found to be small, as a re-
sult of cancellation of phase variations in the the pulse intensity. That cancellation is
nearly perfect in the pulse component associated with “early-time diffusion”, i.e., in the
early-time steeply rising structure due to small-angle diffractive scattering on medium
constituents.

1 Radiative transfer equation with moving scatterers

We provide here a short summary of how propagation of the mutual coherence function
(MCF) of electromagnetic pulses propagating in a time-dependent particulate random
medium can be described by means of the the radiative transfer equation (RTE).

Assumptions about the medium and the propagating pulse. We consider here
an infinite, statistically homogeneous and isotropic medium. The medium is assumed to
be dilute, i.e., the average scatterer-scatterer distance d0 large compared to the carrier
wavelength,

d0 � λ0 ≡
c

ν0
(1)

(ν0 = ω0/(2π) is the carrier frequency), while the scatterer radius a may be compara-
ble with the carrier wavelength. The above assumptions ensure a large mean free path
`t = 1/(n0 σt(ω0)), defined in terms of the scatterer number density n0 = 1/d30 and the
total cross-section on a single scatterer (associated with coherent wave propagation). Since,
assuming non-resonant scattering, the cross-section is approximately bounded by it geomet-
rical scattering value, σt(ω0) . 2πa2, we also have

`t &
d30

2πa2
� d0 � λ0 . (2)

The pulse is assumed to be narrow-banded, in the sense of bandwidth B small compared
to the carrier frequency ν0. When considering early time diffusion we will additionally

1
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assume that the pulse dutation T p = 1/B is sufficently small, such that its physical extent
cT p = c/B is smaller than the mean free path. These two conditions are equivalent to

c

`t
< B � ν0 . (3)

These above assumptions hold in propagation of typical short optical and infrared pulses
through atmospheric obscuring media, such as clouds or fog. For λ0 ∼ 1µm, d0 ∼ 1mm,
and a . 5µm the mean free path is of the order lt & 10 m. Even a short pulse of duration
T = 1/B ∼ 1 ps satisfies the second condition in Eq. (3), i.e., B ∼ 1 THz� ν0 ∼ 300 THz.
The first condition holds for pulses of duration less than `t/c ∼ 30 ns.

Formulating transport equations even for static statistically inhomogeneous media is a
difficult problem, still subject to some controversy. Therefore, since our main objective is
to assess the effects of medium motion, we will concentrate on situations where the medium
can be considered statistically uniform, at least over domains (“samples”) of sizes L larger
than or comparable to the mean free path `t, i.e., on the scale of distances between two
consecutive interactions (as understood in the context of transport equations).

The above assumption, together with the previously assumed properties of the prop-
gating pulse, allows to treat the considered medium sample as statistically homogeneous
and uniformly moving with a constant velocity. Since we are concerned with terrestial at-
mospheric media (rather than possible astrophysical applications involing relativistic gases,
plasmas, etc.) the medium motion velocities V are typical of winds and certainly below the
speed of sound, V < 340 m/s. Therefore, the magnitude of the first-order Doppler effects is
at most

V

c
< 1.2 10−6 ; (4)

the fact that such effects may not be negligible, is due to other factors appearing in observ-
able quantities, e.g., a large number of signal periods during the measurement time, a large
number of wavelength in the interfererometer cavity, etc.

The radiative transfer equation (RTE). The main physical quantity we will be con-
cerned with, will be the mutual coherence function, i.e., the ensemble-averaged Green func-
tion of the product of a field and its complex conjugate, 1

Γ (t; τ, τ ′;R; r, r′) := 4π
〈
uτ ′/2, r′/2

(
t+ τ/2;R+r/2

)
u∗− τ ′/2,− r′/2

(
t− τ/2;R−r/2

)〉
, (5)

where ut,r is a field emitted by an instantaneous point source at the time t and location r.
Because of the assumed linearity of the medium response, the mutual coherence function
(MCF) of fields generated by any source can be obtained by calculating a convolution of
the Green function (5) with the source distribution.

Starting with the above MCF, one can obtain, under the assumptions specified above,
a modified radiative transfer equation (RTE) taking into account motion of the perticulate
medium. The derivation proceeds through the usual steps of obtaining an approximate
forms of the Dyson equation (DE) for the ensemble average of the coherent propagating

1 The factor 4π in the definition (5) has been introduced in order to normalize the MCF in the same was
as the energy flux.

2
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field and then of the Bethe-Salpeter equation for the MCF; under the assumption of high
frequencies and a dilute medium, the latter equation is reduced to RTE. In these steps,
however, we take into account effects of the medium motion: after expressing the kernels
of the DE and the RTE in terms of the amplitudes and cross-sections for scattering on a
single medium constituent, we modify these amplitudes (in a rigorous way) by including
the motion of the scatterer.

The final result for a statistically homogeneous medium domain, uniformly moving with
a velocity V is the Fourier-space “generalized RTE” for the Green function
Γ̃V (ω0;Ω,ω;P , ŝ, ŝ′), where ŝ and ŝ′ are the final an initial energy flux propagation di-
rections, and the meaning of the frequency Ω and the wave number P is explained by its
relation to the MCF (5),

ΓV (t; τ, τ ′;R; r, r′) =

∫
dΩ

2π

dω

2π

dω0

2π

d3P

(2π)3

∫
d2ŝ

4π

d2ŝ′

4π

e− iΩ t e− iωτ e iω0τ
′
e iP ·R e− i k(ω) ŝ·r e i k(ω0) ŝ0·r′

Γ̃V (ω0, Ω, ω;P , ŝ, ŝ0) ,

(6)

where k(ω) ≡ ω/v0 and v0 ≈ c is the propagation speed of the coherent wave in the effective
medium (discussed below). Hence, the wave number P is associated through the Fourier
transform with the mid-point propagation distance R; the frequency variable Ω is Fourier-
conjugate to the mid-point time variable t and the variables ω and ω0 are conjugate to the
observation and source relative time variables τ and τ ′; finally, the relative coordinates r
and r′ are associated with the energy flux directions ŝ and ŝ0.

The obtained RTE has the form

Γ̃V (ω0;Ω,ω;P , ŝ, ŝ′)− G̃V (Ω,ω;P , ŝ)

∫
d2ŝ′′ Σ̃s(ω, ω − ω/v0 V · (ŝ− ŝ′′); ŝ, ŝ′′)

Γ̃V (ω0;Ω,ω − ω/v0 V · (ŝ− ŝ′′);P , ŝ′′, ŝ′)

= 2π δ(ω − ω0) δ
2(ŝ− ŝ′) G̃V (Ω,ω;P , ŝ)

(7)

with the “RTE two-field Green function”

G̃V (Ω,ω;P , ŝ) :=
1

µt(ω − ω/v0 V ·ŝ)− i (Ω/v0 − P ·ŝ)
(8)

describing coherent-wave propagation in the effective medium, and involving the attenuation
coefficient

µt(ω) = n0 σt(ω) ;

finally, the “scattering function”

Σ̃s(ω, ω
′; ŝ, ŝ′) = n0 σs(ω, ω

′; ŝ, ŝ′) ;

is expressed in terms of the differential scattering cross-section σs, in which ŝ and ŝ′ are
the directions of the final and initial wave vectors, and ω and ω′ are the corresponding
Doppler-shifted frequencies, as illustrated in Fig. 1.

The RTE (7) is similar to that obtained by Ishimaru, except that the latter does not
take into account frequency shifts in coherent scattering.

3
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(a) (b)

Figure 1: (a) Scattering on a single stationary particle, with a fixed frequency ω0 and
k0 = k(ω0); in general, k(ω) ≡ ω/v0. (b) Scattering on a moving particle with a frequency
change.

Some notable features of the generalized RTE (7) are as follows:

- The kernel depends in a nontrivial way on ω, i.e., different ω values are coupled in the
equation.

- The solution also depends on ω: if the source emits a signal with a fixed ω = ω0, the
solution will contain a continuum of ω values centered about ω0.

- According to Eq. (6), the spread of the solution in ω affects the MCF dependence on
the relative time τ . In particular, the Green function evaluated at τ = 0 and r = 0 (the
analogue of the ordinary specific intensity), involves only the ω-integral of the solution
(7),

ΓV (t; 0, τ ′;R;0, r′) =

∫
dΩ

2π

dω0

2π

d3P

(2π)3

∫
d2ŝ

4π

e− iΩ t e iω0τ
′
e iP ·R e i k(ω0) ŝ0·r′

Γ̂V (ω0, Ω;P , ŝ0) ,

(9)

with

Γ̂V (ω0, Ω;P , ŝ0) =

∫
dω

2π

∫
d2ŝ

4π
Γ̃V (ω0, Ω, ω;P , ŝ, ŝ0) . (10)

Small variations in the cross-section. Suppose now the frequency dependence of the
scattering cross-section is sufficiently weak, so that the scattering function ΣV and the
Green function GV in the RTE (7) can be evaluated at the carrier frequency, i.e., one can
approximate

Σ̃s(ω, ω − k0 V · (ŝ− ŝ′′); ŝ, ŝ′) Σ̃s(ω0; ŝ, ŝ
′) := n0 σs(ω0, ω0; ŝ, ŝ

′) (11a)

and

G̃V (Ω,ω;P , ŝ) G̃(Ω,ω0;P , ŝ) :=
1

µt(ω0)− i (Ω/v0 − P ·ŝ)
(11b)

with

4
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µt(ω0) = n0 σt(ω0) . (11c)

In this limit the Green and the scattering functions in the RTE become independent of the
medium motion and the function Γ̂V (ω0;Ω,ω0;P , ŝ, ŝ

′) ≡ Γ̂ (Ω,ω0;P , ŝ, ŝ
′) satisfies the

ordinary RTE

Γ̂ (Ω,ω0;P , ŝ, ŝ
′)− G̃(Ω,ω0;P ; ŝ)

∫
d2ŝ′′ Σ̃s(ω0; ŝ · ŝ′′) Γ̂ (Ω,ω0;P , ŝ

′′, ŝ′)

= δ2(ŝ− ŝ′) G̃(Ω,ω0;P , ŝ) .

2 Estimates of the Doppler shift effects in the RTE

The analysis conducted above indicates that the medium motion affects the intensity only
if there is a significant dispersion in scattering on the individual medium constituents.

However, implementation of the ω-dependent RTE (as an integral equation) would be
substantially more involved than for the ordinary RTE. In particular,

- for a statistically homogeneous infinite medium the solution of the ordinary RTE can
be expanded in spherical harmonics in the angles of ŝ relative to P̂ ,

- the ω-dependent RTE solution is a function of both P̂ ·ŝ and V̂ ·ŝ and the partial-wave
expansion becomes considerably more complicated,

- for a statistically homogeneous infinite medium the ordinary RTE reduces to an alge-
braic (matrix) equation,

- the ω-dependent RTE would not reduce to an algebraic equation, but would remain
a Fredholm integral equation (of the second kind).

At the same time, implementation of the ω-dependent RTE as a Monte Carlo solution would
be also rather complex and computationally intensive: it would require introducing the
relative time as an additional degree of freedom and making interactions with the scatterers
nonlocal in that time (we stress again that the Doppler shift is not directly related to the
time delay and to the pulse length)

Therefore, we concentrate first on the following question: how much dispersion is there
within the the Doppler shift range?

• The upper bound on the frequency shift is

|∆ωD| ≤
2v

c
ω0.

We take, as an estimate, the droplet speed v = 340 m/s (the speed of sound) and assume
the carrier wavelength λ0 = 0.633µm (the red-light HeNe laser). Then the carrier frequency
and its spread are

ν0 =
ω0

2π
≈ 474 THz = 4.74 · 1014 Hz ,

∆ νD =
∆ωD

2π
≈ 2.1 GHz = 2.1 · 109 Hz ,

5
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and the corresponding relative spread in the wavelength is

|∆λD|
λ0

≤ 2v

c
≈ 2.3 · 10−6 .

Hence, the considered Doppler induced wavelength range is

λ = (0.633± 1.4 · 10−6)µm

or

λmax = 0.6330014µm ,

λ0 = 0.6330000µm ,

λmin = 0.6329986µm .

We note that the above bounds correspond to |ŝ− ŝ′| = 2, i.e., to the backward scattering
situation. Early-time diffusion is mostly due to much smaller angles, θ . 6◦, hence |ŝ− ŝ′| .
0.1, hence the expected frequency shifts will be about 20 times smaller. Also, in realistic
situations, the droplet speeds are not likely to be as high as the ones used in the above
estimates.

The typical duration, bandwidth, and the wavelength spread of the “early-time diffu-
sion” pulses are

∆ tp = 100 ps ,

∆ νp =
1

∆ tp
≈ 10 GHz ,

|∆λp|
λ0

=
∆ νp
ν0
≈ 2.1 · 10−5 .

The resulting Doppler shift ∆ νD ≈ 2.1 GHz is relatively small, but not negligible, in com-
parison with the typical duration and bandwidth of the early-time diffusion pulses.

• We will now proceed to assess variations of the integrated and differential scattering
cross-sections which might result from the motion-induced frequency variations in the RTE
and their impact on the early -time diffusion component of the signal.

In the example given below, we assume

- the medium to be an ensemble of gamma-distributed water droplets with the shape
parameter ν = 10 and the r.m.s. radius a = 5µm

- the band of Doppler induced frequencies (wavelengths)

λmax = 0.633005µm ,

λ0 = 0.633000µm ,

λmin = 0.632993µm .

6
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It is known that scattering on a water droplet is dispersive, i.e., its cross-section can change
rapidly with the frequency. However, Fig. 2 shows that although the Mie resonances are
indeed observed and the cross-section changes significantly,

- the relative spacing between the Mie resonances,

|∆λM|
λ0

& 0.006

is still much larger than the Doppler shift of interest

|∆λD|
λ0

≤ 2v

c
≈ 2.3 · 10−6 .

Fig. 3 shows differential cross sections for the carrier and two (up- and down-) Doppler shift
frequencies (wavelengths). We observe that the differential cross-section change negligibly
over the Doppler shift band.

1.50e-10

1.55e-10

1.60e-10

1.65e-10

1.70e-10

1.75e-10

0.600 0.610 0.620 0.630 0.640 0.650

σ
s
(m

2
)

λ (µm)

Figure 2: Wavelength dependence of the integrated scattering cross-section for a water
droplet of radius a = 5µm.
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Figure 3: Differential cross-sections for the three wavelengths (the carrier wavelength and
the wavelengths corresponding to the up- and down- Doppler shifts). The water droplet
radius is a = 5µm.

Figs. 2 and 3 indicate that (for reasonable assumptions about the droplet size distribution)
the value of the droplet cross-section can be, within a good approximation, assumed constant
within the frequency range cause by the Doppler shift.

Fig. 4 shows the time resolved specific intensity for two wavelengths corresponding to
the up- and down- Doppler shifts. The results indicate that the early-time intensity can be
potentially very weakly sensitive to the medium motion.

8
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Figure 4: Time-resolved intensities for the two wavelengths corresponding to the up- and
down- Doppler shifts. The middle and bottom plots are the same as the top plot but the
early-time interval is extended.
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